
Autonomous On-board Processing for Sensor Systems:
High Performance Fault Tolerance Techniques

Matthew French, John Paul Walters, Mark Bucciero
University of Southern California, Information Sciences Institute

{mfrench, jwalters, mbuccier}@isi.edu

Abstract
A-OPSS fuses high performance reconfigurable proc-

essors with emerging fault-tolerance and autonomous
processing techniques in order to realize high perform-
ance, autonomous sensor systems. By enabling fault-
tolerant use of high performance on-board processing the
utility of sensor systems will be greatly enhanced, achiev-
ing 10-100x decrease in processing time, which directly
translates into more science experiments conducted per
day and a more thorough, timely analysis of captured
data. This research also addresses the ability to quickly
react and adapt processing or mission objectives in real-
time, by combining autonomous agents with reconfigur-
able computing techniques. Using A-OPSS, satellites,
airborne or ground sensors will be able to perform high
performance, fault tolerant computation, and develop
situational awareness about their operating environment
and tune or adapt the application algorithm such that
they return the most useful and significant data to human
and automated decision support systems. This paper fo-
cuses on the first year’s efforts which revolve around de-
veloping robustness to radiation induced upsets that oc-
cur in the embedded PowerPC within Xilinx FPGAs. This
work presents an analysis of the sensitive cross section of
both the architecture and a SAR application parallelized
over two PowerPC405s. We then introduce a series of
fault tolerance software routines used by the High Per-
formance Computing (HPC) community and adapt them
to an embedded system, such as the NASA GSFC devel-
oped SpaceCube 1.0.

1. Introduction

Over the past decade, the physics of CMOS at ad-
vanced process node feature sizes has entered a trade
space where total ionizing dose (TID) is no longer much
of a concern for modern devices in relatively low radia-
tion environments such as Low Earth Orbit (LEO), how-
ever Singe Event Upsets (SEUs) have become more pre-
valent. Researchers have focused on both hardware and
software techniques to mitigate radiation effects in
SRAM-based Field Programmable Gate Arrays in order
to address SEUs and make these devices radiation tolerant.
This has proved to be a boon to the space community as
these processors can deliver processing performance sev-
eral generations ahead of traditional radiation hardened by
process devices, such as anti-fuse FPGAs.

As technology has progressed, FPGAs have evolved
from homogeneous sea of gates architectures, to hetero-
geneous system on a chip architectures containing multi-
pliers, multi-gigbit transceivers, Ethernet cores, and even
embedded PowerPC processors. The embedded PowerPC
in particular adds significant benefit to the space commu-
nity as now scientists, who may not be VHDL experts,
have an easy migration path for their existing C programs
to an embedded space platform. This enables a rapid ap-
plication development cycle where core functionality is
quickly achieved and then code migration to the FPGA
fabric is performed gradually, targeting performance-
critical functions. This development cycle is especially
attractive to the space community as it allows a low-risk
spiral development path that yields higher performance. It
is also easy to build embedded space platforms with sev-
eral PowerPCs and scale performance as 2 PowerPCs are
available in a single FPGA, and most current space hard-
ware contains several FPGAs.

The downside however is that the embedded PowerPCs
are susceptible to SEUs and new fault mitigation tech-
niques must be developed in order to make use of these
attractive features. Traditional FPGA fault tolerance
strategies can detect and correct errors within the FPGA’s
bitstream;i,ii however, the bitstream does not contain the
state of the embedded PowerPC cores, and consequently,
errors within the PowerPC cannot be scrubbed. Addition-
ally, there are two, not three, PowerPCs per FPGA, so
traditional Triple Modular Redundancy (TMR) techniques
are awkward to apply.

In this paper we describe our software-based fault tol-
erance strategies for PowerPC devices embedded within
Xilinx Virtex 4 FX60 FPGAs. Our work targets scientific
applications operating on traditional space-based FPGA
architectures consisting of an FPGA and a radiation-
hardened controller. These applications are more tolerant
to data upsets and, to a limited extent, may trade reliabil-
ity for increased performance in space. To that end, our
primarily goal is to detect and correct control flow and
other catastrophic errors that would otherwise hang or
crash the embedded PowerPCs. We ignore small data
errors that can be corrected in post-processing on the
ground. We use heartbeat monitoring, control flow asser-
tions, and checkpoint/rollback to achieve high perform-
ance and low overhead fault tolerance.

2. Target Platform and Applications
The application level fault tolerance strategies pre-

sented in this paper are generic enough to be utilized on
any standard FPGA-based space platform, however as a
proof of concept an engineering sample of the NASA
SpaceCube 1.0iii is being targeted. The SpaceCube is
made up of three main components critical to this study: 2
Xilinx Virtex 4 FX60 FPGAs and 1 8-bit micro-controller
implemented in a radiation hardened Aeroflex FPGA.
Each Virtex 4 FX60 FPGA contains two embedded
PowerPC 405 cores. With four PowerPC 405s, the
SpaceCube represents a small computing cluster and is
nearly 12 times more powerful than the RAD750. For
some building block experiments, this paper utilized the
Xilinx ML410 development board, consisting of a single
Virtex 4 FX60 FPGA allowing for a straightforward tran-
sition to the SpaceCube architecture. For the ML-410 test
set up, a host PC communicating via UART currently
plays the role of the Aeroflex micro-controller in the
SpaceCube.As mentioned previously, these techniques are
focusing on the domain of science applications. This per-
tains to all of the NASA decadal survey missions, but
especially so to all that could greatly benefit from high
performance on-board processing, such as DESDyniiv,
and autonomy, such as HyspIRIv. For this phase of the
research, a synthetic aperture radar (SAR) application,
representative of those being considered for DESDyni
was utilized to implement the fault tolerant techniques on
and measure performance. In future phases Hyperspectral
imaging applications with autonomous scenarios will be
considered.

These applications and missions yield a set of assump-
tions that will largely drive our fault tolerance strategies.
First, by looking at science applications we can assume
that non-persistent data errors that can be cleaned up via
ground based processing are acceptable, especially when
the trade off is to provide more data in a timely manner.
Second, these missions are largely in sun-synchronous
orbits, which represent a relatively low radiation envi-
ronment, further relaxing the need for high overhead fault

mitigation techniques. Third, these missions are not in
continuous line of sight of a downlink station, which en-
ables techniques such as out of order execution as there is
a fair amount of system buffering. Finally, these applica-
tions tend to be streaming in nature, meaning they have a
high degree of inherent parallelism that can be exploited.

The SAR application is representative of these scien-
tific applications in that it exhibits large degrees of data
parallelism over the compute-intensive FFT loops. When
mapped to the SpaceCube architecture, this parallelism is
exploited by dedicating a single PowerPC core to act as
the master (performing coordination, file reads, etc.) and
all other PowerPC cores acting as FFT-loop-level workers.
This implementation will serve as our baseline as com-
pared to versions with fault tolerance added.

3. PowerPC Analysis

It is first necessary to establish a theoretical sensitivity
of the PowerPC to help establish an estimate of the upper
bound of the sensitive cross section and set design goals
for the fault tolerance techniques. Unfortunately, the exact
number of registers and transistors in the embedded Po-
werPC is impossible to know without the original VLSI
design, however an architectural analysis can provide data
accurate enough for these purposes. Table 1 shows our
estimate of the sizes of the key micro-architecture features
within the PowerPC 405. The key point here is that the
upper bound on the number of sensitive bits is about
141Kbits. For reference, the Xilinx V4 FX60 configurable
logic has 21.3Mbits, or a potentially 151x larger cross
section.

Table 1 PowerPC 405 Register Estimate

Feature Size

Instruction Cache 16 KB +64 control

Data Cache 16 KB + 64 control

General Purpose Register Set 32 x 32bit

Special Purpose Register Set 32 x 32bit

Execution Pipeline 10 x 32bit

ALU / MAC ~1,200 bits

Timers 3x 64bit

MMU 72 x 68bits

Misc 1024

Total ~140,880 bits

It is important to realize that the upper bound estima-
tion is just an estimate and actual sensitivity will depend
on the application, what architectural features it is using

Figure 1 NASA’s SpaceCube 1.0

and how it uses them. For example, initially in SRAM-
based FPGA studies, it was believed that the sensitive
cross section was identical to the number of bits in the
bitstream file it holds in memory. Additional experimen-
tation eventually proved that only about 1/100 of those
bits are ever used at any time, meaning the cross section
was about 100x smaller than first believed and making a
large difference in the reliability estimates for FPGAs.
Similar considerations need to be taken into account when
analyzing the PowerPC. For example, if an OS is not used,
supervisory mode cannot be used, and therefore several
special purpose registers will never be used. Similarly,
caches and MMUs can be disabled entirely or used in
reduced manners to limit sensitivities. A key characteris-
tic of processors that is different than FPGAs is the time
dynamic nature of registers, meaning that registers within
the PowerPC may hold values that were at one time criti-
cal to an application’s function, but have already been
used, and will eventually get over-written by new input
data. From a sensitive cross section analysis then, there
are a number of cases where the time at which an SEU
occurs is important, as an SEU could flip a bit in a regis-
ter that has already been used and naturally get flushed by
new incoming data and never show an impact on the re-
sults of the application.

Overall the manual analysis of the embedded PowerPC
architecture provides some interesting insights. First, we
expect the upset rate to be about 100x smaller than the
FPGA fabric. Secondly, if the assumption that scientific
applications are tolerant to non-persistent data errors
holds, the amount of protection needed on large structures
such as data caches is greatly reduced. Finally, the sensi-
tive cross section is even further reduced as an SEU only
has a small window of opportunity to impact a register
while it is still critical to an application’s functionality.
All of these factors point towards developing a fault toler-
ant strategy that protects the control structures of an ap-
plication first.

4. Parallelizing SAR

As described earlier, the parallel SAR application is
implemented using a master-worker model. The master
PowerPC is responsible for coordination, initialization,
and I/O. The master and worker both compute independ-
ent FFTs in parallel. Communication and coordination
between the two PowerPCs is achieved through the use of
dedicated BRAMs. The BRAMs provide a simple
mechanism for the implementation of barrier synchroniza-
tion and an easy method for passing pointers between the
two processors.

The primary obstacle to achieving performance in our
implementation is the lack of hardware cache coherency
between the two PowerPC cores. Disabling caching
would have provided a straightforward implementation
path at the cost of extremely poor performance. Using

write-through caching and strategic cache flushing pro-
vided a modest improvement; however, performance still
lags far behind write-back caching.

Enabling write-back caching required a thorough un-
derstanding of the memory and caching characteristics of
the application. The solution is to use a combination of
cache flushing and proper cache alignment. By cache-
aligning each row of the shared arrays and flushing cach-
es at synchronization points, we are able to avoid all
cache coherency errors.

Figure 3 presents the results of the parallel SAR im-
plementation with three caching options: no caching,
write-through caching, and write-back caching. Speedup
is greatly limited by not having the cache enabled; how-
ever, such an implementation provides performance that
is more than 2x slower than a single processor with cach-
ing enabled. By enabling write-through caching the im-
plementation is easier; however, the increased memory
transactions nearly eliminate all parallel improvement.
By enabling write-back caching we are able to achieve
parallel speedup and make productive use of both proces-
sors.

5. Fault Tolerance Strategies
The techniques described in this section focus on pro-

tecting the control flow of an application and include
heartbeats, control flow assertions, and checkpointing and
rollback. To minimize the impact on the application de-
veloper, our fault tolerance strategies can be implemented
after algorithm development is completed. These meth-
ods can be applied with pre-compiler directives (e.g. con-
trol flow assertions) or by calling methods in a provided
library (heartbeats and checkpointing/rollback) at desig-
nated points during application execution. This post-
development flexibility allows the developer to choose
which methods to apply to the application and at what
points during execution to apply them.

5.1. Monitor and Heartbeats
For SpaceCube implementations, the radiation hard-

ened Aeroflex micro-controller serves as an application
monitor that is responsible for maintaining the state of the

Figure 3: Parallel performance without caching, with

system and allocating computations to processors. It acts
as an application supervisor to ensure the system is func-
tioning as expected. The monitor starts by assigning a
task to a specific PowerPC. Then, it observes the applica-
tion for any unexpected behavior. If such a behavior is
discovered, the monitor can decide to reassign that com-
putation to another processing element or to restart the
application on the same one.

The monitor receives heartbeat messages, which indi-
cate the current state of the computation, from each proc-
essing element in the system. These heartbeat messages
are sent to the application monitor at a regular interval.
This interval can be chosen by the application developer
and, upon expiration, triggers an interrupt for the
PowerPC. If the monitor does not receive a heartbeat
message from a PowerPC, or if a message arrives unex-
pectedly, it concludes that an upset has occurred and ei-
ther a rollback or reset takes place.

Heartbeat messages also provide information about the
state of the application and the processor. For example,
when an application starts or ends, a unique type of heart-
beat message is generated. Similarly, when an application
detects some sort of failure, a different heartbeat message
is sent to the monitor. The monitor verifies the contents
of the heartbeat messages and decides on an appropriate
course of action. The action taken can be decided at the
system level and applied to the application. For example,
if a computation is short, a checkpoint and rollback
scheme may be unnecessary. In this case, when an error
is detected, the computation can be restarted instead of
rolled-back.

5.2. Control Flow Assertions
Control flow assertions enable source code to perform

a limited self-check at run-time in order to detect SEUs
corrupting the program counter, loop counters, etc.vi The
advantage to using control flow assertions is that each
PowerPC may evaluate its own progress without sending
any messages to the rad-hard monitor. This improves
performance and scalability because it reduces the bus
interaction with the monitor, and only requires control
flow messages to be sent to the monitor when an error
occurs. The assertions may be implemented at either the
compiler level or source code level. We chose to imple-
ment assertions at the source code level as a series of pro-
grammer-directed pragmas, allowing the developer to
specify critical code paths with minimal overhead.

The programmer adds assertions by inserting pairs of
#pragma BEGIN var/#pragma END var statements at
user-designated points in the source code. A second util-
ity then transforms the assertion statements into standard
C code. Once assertions are added, control flow variables
are checked at each #pragma END var statement for
consistency. If an error is detected, a flag is set and sub-
sequent heartbeats inform the monitor of the control flow
error allowing corrective action to be taken either by re-

starting the computation or rolling back to a previous
checkpoint. A global incrementing counter, unique to
each assertion variable, is also maintained. This allows
the heartbeat system to monitor application progress at a
coarse grain. If the counters stop incrementing, the heart-
beat monitor is alerted and corrective action is taken.

5.3. Checkpointing and Rollback
When a failure occurs, our primary corrective action is

through checkpointing and rollback. A user-level library
was developed that allows the user to snapshot a running
computation through the use of a simple checkpoint() and
rollback() API. The PowerPC’s major memory segments
are captured and stored either to a file or, for improved
performance, to memory. After checkpointing, the heart-
beat system notifies the monitor that a checkpoint has
been taken, and program execution continues normally.
The monitor records the checkpoint event so that in case
of failure the monitor is able to instruct the application to
either rollback (if a checkpoint has been taken) or restart
computation (if a failure occurs prior to a checkpoint).

The major components of an application are easily
checkpointable; however, there are some aspects that our
checkpointing library is unable to snapshot. Computa-
tional states that exist within the FPGA logic, for example,
are not automatically captured. Similarly all open files
should be closed prior to checkpointing. To help pro-
grammers cope with these requirements we allow the user
to easily extend the checkpointing process with user-
defined callbacks. Callbacks allow the user to supply a
function name (and argument) to the checkpoint() and
rollback() API calls that will be called immediately prior
to checkpointing and immediately after a rollback. The
programmer can use the callbacks to close open files be-
fore checkpointing and reopen the files after a rollback.

6. Preliminary Data

Fault injection in an FPGA is traditionally performed
by reading the bitstream, selecting a bit to inject an error
into, flipping the bit, and running test vectors to see if the
upset causes an error in the results. Due to the fact that the
PowerPC is not represented in the bitstream, even error
injection is difficult and proving to be a research topic.
Currently the best method is to utilize JTAG based ap-
proaches which can interact with Xilinx’s version of GDB
to alter states in its debugger tools while executing an
application. While these approaches yield some important
data, they are only capable of injecting faults into the reg-
ister set and cannot reach important features such as the
caches, execution pipeline, ALU etc. Work currently un-
derway under the A-OPSS project is expanding these fault
injection techniques to consider these architecture features.

Until these new fault injectors are brought online, test-
ing is limited to experiments using traditional JTAG fault
insertion. Table 2 shows the results of register-based fault
injection using the SPFI-ePPC fault injection toolvii. This

initial test set of 100 trials is encouraging since the data
suggests that for injections into the register set, the major-
ity of failures do not manifest as silent data corruption. In
fact, only 2% resulted in silent data corruption, while 89%
resulted in no observable errors at the application level.
The 8% of the injections that resulted in an observable
application crash can be easily detected by the monitor.

Figure 3 represents the preliminary fault tolerance re-
sults measured on a Xilinx ML410 board. SAR is paral-
lelized over 2 PowerPC cores and performance is meas-
ured against a baseline parallel SAR (no fault tolerance),
parallel SAR with heartbeats and assertions, and finally
parallel SAR with heartbeats, assertions, and a single
checkpoint to either compact flash or DRAM. Heartbeats
and assertions contribute little overhead and maintain
99% efficiency. Clearly, checkpointing to compact flash
incurs a much higher overhead (78% efficiency) than
checkpointing to DRAM (98% efficiency). The advan-
tage to checkpointing to compact flash is that checkpoints
survive device resets and reprogramming and DRAM
usage is not increased. In practice these tradeoffs should
be evaluated per-application.

In Figure 5 we compare our AOPSS fault tolerance in-
frastructure to traditional duplication, TMR, and QMR (2
CPUs, 3 CPUs and 4 CPUs). We project the performance
of 3 and 4 CPUs based on a 1.4x speedup for each dou-
bling of processors (the same we achieved from our ini-

itial 2 CPU implementation). Clearly AOPSS demon-
strates improved resource utilization over the existing
techniques.

7. Conclusions and Future Work
A high performance and low overhead fault tolerance

strategy targeting scientific applications on the Space-
Cube 1.0 platform has been presented and initial steps
towards experimental proof have been taken. In the
upcoming year this work will further be enhanced by per-
forming more fault injection testing using fault emulators
capable of addressing more of the PowerPC architecture
as well as performing radiation beam testing. With the
fault tolerant architectural groundwork laid, the team will
expand the application base to consider autonomous ap-
plication scenarios, such as Hyperspectral image pre-
processing and downlink prioritization.
8. References

i http://www.xilinx.com/esp/aero_def/see.htm
ii Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and
Michael J. Wirthlin, “Improving FPGA Design Robustness with
Partial TMR”, IEEE International Reliability Physics Sympo-
sium (IRPS) pp. 226-232, April 2006.
iii http://gsfctechnology.gsfc.nasa.gov/SpaceCube.htm
iv http://desdyni.jpl.nasa.gov/
v http://hyspiri.jpl.nasa.gov/
vi Ramtilak Vemu, Jacob A. Abraham, "CEDA: Control-flow
Error Detection through Assertions," iolts, pp.151-158, 12th
IEEE International On-Line Testing Symposium (IOLTS'06),
2006.
vii http://www.chrec.org/

Figure 3: Efficiency of fault tolerance strategies normal-

ized to parallel SAR (2 PowerPCs) without fault tolerance.

Table 2 Register Set Error Injection Results
Injection Results Percentage occurring
Data Corruption 2%
Crash 8%
Injection Failure 1%
No Effect 89%

Figure 5: AOPSS performance vs. traditional strategies.

